Molecular characterization of potential nitrogen fixation by anaerobic methane-oxidizing archaea in the methane seep sediments at the number 8 Kumano Knoll in the Kumano Basin, offshore of Japan.

نویسندگان

  • Junichi Miyazaki
  • Ryosaku Higa
  • Tomohiro Toki
  • Juichiro Ashi
  • Urumu Tsunogai
  • Takuro Nunoura
  • Hiroyuki Imachi
  • Ken Takai
چکیده

The potential for microbial nitrogen fixation in the anoxic methane seep sediments in a mud volcano, the number 8 Kumano Knoll, was characterized by molecular phylogenetic analyses. A total of 111 of the nifH (a gene coding a nitrogen fixation enzyme, Fe protein) clones were obtained from different depths of the core sediments, and the phylogenetic analysis of the clones indicated the genetic diversity of nifH genes. The predominant group detected (methane seep group 2), representing 74% of clonal abundance, was phylogenetically related to the nifH sequences obtained from the Methanosarcina species but was most closely related to the nifH sequences potentially derived from the anoxic methanotrophic archaea (ANME-2 archaea). The recovery of the nif gene clusters including the nifH sequences of the methane seep group 2 and the subsequent reverse transcription-PCR detection of the nifD and nifH genes strongly suggested that the genetic components of the gene clusters would be operative for the in situ assimilation of molecular nitrogen (N(2)) by the host microorganisms. DNA-based quantitative PCR of the archaeal 16S rRNA gene, the group-specific mcrA (a gene encoding the methyl-coenzyme M reductase alpha subunit) gene, and the nifD and nifH genes demonstrated the similar distribution patterns of the archaeal 16S rRNA gene, the mcrA groups c-d and e, and the nifD and nifH genes through the core sediments. These results supported the idea that the anoxic methanotrophic archaea ANME-2c could be the microorganisms hosting the nif gene clusters and could play an important role in not only the in situ carbon (methane) cycle but also the nitrogen cycle in subseafloor sediments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin

The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) cov...

متن کامل

Molecular and isotopic analysis of anaerobic methane- oxidizing communities in marine sediments

Convergent lines of molecular, carbon-isotopic, and phylogenetic evidence have previously indicated (Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F., 1999. Methane-consuming archaebacteria in marine sediments. Nature 398, 802±805.) that archaea are involved in the anaerobic oxidation of methane in sediments from the Eel River Basin, o€shore northern California. Now, further...

متن کامل

Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times i...

متن کامل

Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor.

Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic met...

متن کامل

Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.

The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 22  شماره 

صفحات  -

تاریخ انتشار 2009